Correlation between semaphorin3A-induced facilitation of axonal transport and local activation of a translation initiation factor eukaryotic translation initiation factor 4E.
نویسندگان
چکیده
An impressive body of evidence has been accumulated indicating that local protein synthesis is implicated in navigation of neurite extension induced by guidance cues, such as semaphorin3A (Sema3A). We found previously that a Src type tyrosine kinase Fyn and cyclin-dependent kinase 5 (Cdk5) mediate Sema3A-signaling. We also showed that Sema3A elicits axonal transport through neuropilin-1, a receptor for Sema3A, located at the growth cones. Here, we investigate the relationship between Sema3A-induced local signaling, protein synthesis, and axonal transport. Lavendustin A, a tyrosine kinase inhibitor, and olomoucine, a cyclin-dependent kinase inhibitor, suppressed Sema3A-induced facilitation of anterograde and retrograde axonal transport in dorsal root ganglion (DRG) neuron with and without the cell body. Sema3A-induced facilitation of axonal transport was attenuated in DRG neurons of fyn- (fyn-/-) and a Cdk5 activator, p35 (p35-/-)-deficient mice when compared with those of wild-type or heterozygous mice. Inhibition of protein synthesis suppressed Sema3A-induced facilitation of axonal transport in the DRG neuron with and without the cell body. Sema3A enhanced the level of immunoreactivity of phosphorylated eukaryotic translation initiation factor 4E (eIF-4E) within 5 min in growth cones in a time course similar to that of the facilitated axonal transport. This enhanced signal for phospho-eIF4E was blocked by lavendustin A or olomoucine and was not detected in the fyn-/- and p35-/- neurons. These results provide evidence for a mutual regulatory mechanism between local protein synthesis and axonal transport.
منابع مشابه
Aberrant eukaryotic translation initiation factor 4E-dependent mRNA transport impedes hematopoietic differentiation and contributes to leukemogenesis.
The eukaryotic translation initiation factor 4E (eIF4E) acts as both a key translation factor and as a promoter of nucleocytoplasmic transport of specific transcripts. Traditionally, its transformation capacity in vivo is attributed to its role in translation initiation in the cytoplasm. Here, we demonstrate that elevated eIF4E impedes granulocytic and monocytic differentiation. Our subsequent ...
متن کاملCell cycle progression and proliferation despite 4BP-1 dephosphorylation.
Proliferation and cell cycle progression in response to growth factors require de novo protein synthesis. It has been proposed that binding of the eukaryotic translation initiation factor 4E (eIF-4E) to the inhibitory protein 4BP-1 blocks translation by preventing access of eIF-4G to the 5' cap of the mRNA. The signal for translation initiation is thought to involve phosphorylation of 4BP-1, wh...
متن کاملMultiple mRNAs encode the murine translation initiation factor eIF-4E.
All eukaryotic cellular mRNAs (except organellar) possess at their 5' end the structure m7GpppX (where X is any nucleotide) termed the "cap." The cap structure facilitates the melting of mRNA 5' secondary structure through the action of initiation factor-4F (eIF-4F) in conjunction with eIF-4B. eIF-4F consists of three subunits of which one, eIF-4E (eIF-4E has recently been designated eIF-4 alph...
متن کاملO-13: Phosphorylation of 4E-BP1 Promotes Translation at The Oocyte Spindle
Background: Fully grown mammalian oocyte utilizes transcripts synthetized and stored during earlier development. In the mouse oocyte there are three forms of cap-dependent translational repressors: 4E-BP1, 4E-BP2, and 4E-BP3. The dominant form, 4E-BP1, inhibits cap-dependent translation by binding to the eIF4E translation initiation factor. Hyperphosphorylation of 4E-BP1 disrupts this inhibitor...
متن کاملThe translation initiation factor eIF-4E binds to a common motif shared by the translation factor eIF-4 gamma and the translational repressors 4E-binding proteins.
Eukaryotic translation initiation factor 4E (eIF-4E), which possesses cap-binding activity, functions in the recruitment of mRNA to polysomes as part of a three-subunit complex, eIF-4F (cap-binding complex). eIF-4E is the least abundant of all translation initiation factors and a target of growth regulatory pathways. Recently, two human cDNAs encoding novel eIF-4E-binding proteins (4E-BPs) whic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 24 27 شماره
صفحات -
تاریخ انتشار 2004